{-# LANGUAGE DeriveDataTypeable #-}
module Data.Attoparsec.Number
{-# DEPRECATED "This module will be removed in the next major release." #-}
(
Number(..)
) where
import Control.DeepSeq (NFData(rnf))
import Data.Data (Data)
import Data.Function (on)
import Data.Typeable (Typeable)
data Number = I !Integer
| D {-# UNPACK #-} !Double
deriving (Typeable, Typeable Number
Typeable Number
-> (forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Number -> c Number)
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Number)
-> (Number -> Constr)
-> (Number -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Number))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Number))
-> ((forall b. Data b => b -> b) -> Number -> Number)
-> (forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Number -> r)
-> (forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Number -> r)
-> (forall u. (forall d. Data d => d -> u) -> Number -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> Number -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Number -> m Number)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Number -> m Number)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Number -> m Number)
-> Data Number
Number -> Constr
Number -> DataType
(forall b. Data b => b -> b) -> Number -> Number
forall a.
Typeable a
-> (forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Number -> u
forall u. (forall d. Data d => d -> u) -> Number -> [u]
forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Number -> r
forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Number -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Number -> m Number
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Number -> m Number
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Number
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Number -> c Number
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Number)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Number)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Number -> c Number
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Number -> c Number
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Number
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Number
$ctoConstr :: Number -> Constr
toConstr :: Number -> Constr
$cdataTypeOf :: Number -> DataType
dataTypeOf :: Number -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Number)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Number)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Number)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Number)
$cgmapT :: (forall b. Data b => b -> b) -> Number -> Number
gmapT :: (forall b. Data b => b -> b) -> Number -> Number
$cgmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Number -> r
gmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Number -> r
$cgmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Number -> r
gmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Number -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> Number -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> Number -> [u]
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Number -> u
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Number -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Number -> m Number
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Number -> m Number
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Number -> m Number
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Number -> m Number
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Number -> m Number
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Number -> m Number
Data)
{-# DEPRECATED Number "Use Scientific instead." #-}
instance Show Number where
show :: Number -> String
show (I Integer
a) = Integer -> String
forall a. Show a => a -> String
show Integer
a
show (D Double
a) = Double -> String
forall a. Show a => a -> String
show Double
a
instance NFData Number where
rnf :: Number -> ()
rnf (I Integer
_) = ()
rnf (D Double
_) = ()
{-# INLINE rnf #-}
binop :: (Integer -> Integer -> a) -> (Double -> Double -> a)
-> Number -> Number -> a
binop :: forall a.
(Integer -> Integer -> a)
-> (Double -> Double -> a) -> Number -> Number -> a
binop Integer -> Integer -> a
_ Double -> Double -> a
d (D Double
a) (D Double
b) = Double -> Double -> a
d Double
a Double
b
binop Integer -> Integer -> a
i Double -> Double -> a
_ (I Integer
a) (I Integer
b) = Integer -> Integer -> a
i Integer
a Integer
b
binop Integer -> Integer -> a
_ Double -> Double -> a
d (D Double
a) (I Integer
b) = Double -> Double -> a
d Double
a (Integer -> Double
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
b)
binop Integer -> Integer -> a
_ Double -> Double -> a
d (I Integer
a) (D Double
b) = Double -> Double -> a
d (Integer -> Double
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
a) Double
b
{-# INLINE binop #-}
instance Eq Number where
== :: Number -> Number -> Bool
(==) = (Integer -> Integer -> Bool)
-> (Double -> Double -> Bool) -> Number -> Number -> Bool
forall a.
(Integer -> Integer -> a)
-> (Double -> Double -> a) -> Number -> Number -> a
binop Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
(==) Double -> Double -> Bool
forall a. Eq a => a -> a -> Bool
(==)
{-# INLINE (==) #-}
/= :: Number -> Number -> Bool
(/=) = (Integer -> Integer -> Bool)
-> (Double -> Double -> Bool) -> Number -> Number -> Bool
forall a.
(Integer -> Integer -> a)
-> (Double -> Double -> a) -> Number -> Number -> a
binop Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
(/=) Double -> Double -> Bool
forall a. Eq a => a -> a -> Bool
(/=)
{-# INLINE (/=) #-}
instance Ord Number where
< :: Number -> Number -> Bool
(<) = (Integer -> Integer -> Bool)
-> (Double -> Double -> Bool) -> Number -> Number -> Bool
forall a.
(Integer -> Integer -> a)
-> (Double -> Double -> a) -> Number -> Number -> a
binop Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
(<) Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
(<)
{-# INLINE (<) #-}
<= :: Number -> Number -> Bool
(<=) = (Integer -> Integer -> Bool)
-> (Double -> Double -> Bool) -> Number -> Number -> Bool
forall a.
(Integer -> Integer -> a)
-> (Double -> Double -> a) -> Number -> Number -> a
binop Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
(<=) Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
(<=)
{-# INLINE (<=) #-}
> :: Number -> Number -> Bool
(>) = (Integer -> Integer -> Bool)
-> (Double -> Double -> Bool) -> Number -> Number -> Bool
forall a.
(Integer -> Integer -> a)
-> (Double -> Double -> a) -> Number -> Number -> a
binop Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
(>) Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
(>)
{-# INLINE (>) #-}
>= :: Number -> Number -> Bool
(>=) = (Integer -> Integer -> Bool)
-> (Double -> Double -> Bool) -> Number -> Number -> Bool
forall a.
(Integer -> Integer -> a)
-> (Double -> Double -> a) -> Number -> Number -> a
binop Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
(>=) Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
(>=)
{-# INLINE (>=) #-}
compare :: Number -> Number -> Ordering
compare = (Integer -> Integer -> Ordering)
-> (Double -> Double -> Ordering) -> Number -> Number -> Ordering
forall a.
(Integer -> Integer -> a)
-> (Double -> Double -> a) -> Number -> Number -> a
binop Integer -> Integer -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Double -> Double -> Ordering
forall a. Ord a => a -> a -> Ordering
compare
{-# INLINE compare #-}
instance Num Number where
+ :: Number -> Number -> Number
(+) = (Integer -> Integer -> Number)
-> (Double -> Double -> Number) -> Number -> Number -> Number
forall a.
(Integer -> Integer -> a)
-> (Double -> Double -> a) -> Number -> Number -> a
binop (((Integer -> Number
I(Integer -> Number) -> Integer -> Number
forall a b. (a -> b) -> a -> b
$!)(Integer -> Number) -> (Integer -> Integer) -> Integer -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
.) ((Integer -> Integer) -> Integer -> Number)
-> (Integer -> Integer -> Integer) -> Integer -> Integer -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
(+)) (((Double -> Number
D(Double -> Number) -> Double -> Number
forall a b. (a -> b) -> a -> b
$!)(Double -> Number) -> (Double -> Double) -> Double -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
.) ((Double -> Double) -> Double -> Number)
-> (Double -> Double -> Double) -> Double -> Double -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Double -> Double
forall a. Num a => a -> a -> a
(+))
{-# INLINE (+) #-}
(-) = (Integer -> Integer -> Number)
-> (Double -> Double -> Number) -> Number -> Number -> Number
forall a.
(Integer -> Integer -> a)
-> (Double -> Double -> a) -> Number -> Number -> a
binop (((Integer -> Number
I(Integer -> Number) -> Integer -> Number
forall a b. (a -> b) -> a -> b
$!)(Integer -> Number) -> (Integer -> Integer) -> Integer -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
.) ((Integer -> Integer) -> Integer -> Number)
-> (Integer -> Integer -> Integer) -> Integer -> Integer -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (-)) (((Double -> Number
D(Double -> Number) -> Double -> Number
forall a b. (a -> b) -> a -> b
$!)(Double -> Number) -> (Double -> Double) -> Double -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
.) ((Double -> Double) -> Double -> Number)
-> (Double -> Double -> Double) -> Double -> Double -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (-))
{-# INLINE (-) #-}
* :: Number -> Number -> Number
(*) = (Integer -> Integer -> Number)
-> (Double -> Double -> Number) -> Number -> Number -> Number
forall a.
(Integer -> Integer -> a)
-> (Double -> Double -> a) -> Number -> Number -> a
binop (((Integer -> Number
I(Integer -> Number) -> Integer -> Number
forall a b. (a -> b) -> a -> b
$!)(Integer -> Number) -> (Integer -> Integer) -> Integer -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
.) ((Integer -> Integer) -> Integer -> Number)
-> (Integer -> Integer -> Integer) -> Integer -> Integer -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
(*)) (((Double -> Number
D(Double -> Number) -> Double -> Number
forall a b. (a -> b) -> a -> b
$!)(Double -> Number) -> (Double -> Double) -> Double -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
.) ((Double -> Double) -> Double -> Number)
-> (Double -> Double -> Double) -> Double -> Double -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Double -> Double
forall a. Num a => a -> a -> a
(*))
{-# INLINE (*) #-}
abs :: Number -> Number
abs (I Integer
a) = Integer -> Number
I (Integer -> Number) -> Integer -> Number
forall a b. (a -> b) -> a -> b
$! Integer -> Integer
forall a. Num a => a -> a
abs Integer
a
abs (D Double
a) = Double -> Number
D (Double -> Number) -> Double -> Number
forall a b. (a -> b) -> a -> b
$! Double -> Double
forall a. Num a => a -> a
abs Double
a
{-# INLINE abs #-}
negate :: Number -> Number
negate (I Integer
a) = Integer -> Number
I (Integer -> Number) -> Integer -> Number
forall a b. (a -> b) -> a -> b
$! Integer -> Integer
forall a. Num a => a -> a
negate Integer
a
negate (D Double
a) = Double -> Number
D (Double -> Number) -> Double -> Number
forall a b. (a -> b) -> a -> b
$! Double -> Double
forall a. Num a => a -> a
negate Double
a
{-# INLINE negate #-}
signum :: Number -> Number
signum (I Integer
a) = Integer -> Number
I (Integer -> Number) -> Integer -> Number
forall a b. (a -> b) -> a -> b
$! Integer -> Integer
forall a. Num a => a -> a
signum Integer
a
signum (D Double
a) = Double -> Number
D (Double -> Number) -> Double -> Number
forall a b. (a -> b) -> a -> b
$! Double -> Double
forall a. Num a => a -> a
signum Double
a
{-# INLINE signum #-}
fromInteger :: Integer -> Number
fromInteger = (Integer -> Number
I(Integer -> Number) -> Integer -> Number
forall a b. (a -> b) -> a -> b
$!) (Integer -> Number) -> (Integer -> Integer) -> Integer -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Integer
forall a. Num a => Integer -> a
fromInteger
{-# INLINE fromInteger #-}
instance Real Number where
toRational :: Number -> Rational
toRational (I Integer
a) = Integer -> Rational
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
a
toRational (D Double
a) = Double -> Rational
forall a. Real a => a -> Rational
toRational Double
a
{-# INLINE toRational #-}
instance Fractional Number where
fromRational :: Rational -> Number
fromRational = (Double -> Number
D(Double -> Number) -> Double -> Number
forall a b. (a -> b) -> a -> b
$!) (Double -> Number) -> (Rational -> Double) -> Rational -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rational -> Double
forall a. Fractional a => Rational -> a
fromRational
{-# INLINE fromRational #-}
/ :: Number -> Number -> Number
(/) = (Integer -> Integer -> Number)
-> (Double -> Double -> Number) -> Number -> Number -> Number
forall a.
(Integer -> Integer -> a)
-> (Double -> Double -> a) -> Number -> Number -> a
binop (((Double -> Number
D(Double -> Number) -> Double -> Number
forall a b. (a -> b) -> a -> b
$!)(Double -> Number) -> (Double -> Double) -> Double -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
.) ((Double -> Double) -> Double -> Number)
-> (Double -> Double -> Double) -> Double -> Double -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Double -> Double
forall a. Fractional a => a -> a -> a
(/) (Double -> Double -> Number)
-> (Integer -> Double) -> Integer -> Integer -> Number
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Integer -> Double
forall a b. (Integral a, Num b) => a -> b
fromIntegral)
(((Double -> Number
D(Double -> Number) -> Double -> Number
forall a b. (a -> b) -> a -> b
$!)(Double -> Number) -> (Double -> Double) -> Double -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
.) ((Double -> Double) -> Double -> Number)
-> (Double -> Double -> Double) -> Double -> Double -> Number
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Double -> Double
forall a. Fractional a => a -> a -> a
(/))
{-# INLINE (/) #-}
recip :: Number -> Number
recip (I Integer
a) = Double -> Number
D (Double -> Number) -> Double -> Number
forall a b. (a -> b) -> a -> b
$! Double -> Double
forall a. Fractional a => a -> a
recip (Integer -> Double
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
a)
recip (D Double
a) = Double -> Number
D (Double -> Number) -> Double -> Number
forall a b. (a -> b) -> a -> b
$! Double -> Double
forall a. Fractional a => a -> a
recip Double
a
{-# INLINE recip #-}
instance RealFrac Number where
properFraction :: forall b. Integral b => Number -> (b, Number)
properFraction (I Integer
a) = (Integer -> b
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
a,Number
0)
properFraction (D Double
a) = case Double -> (b, Double)
forall b. Integral b => Double -> (b, Double)
forall a b. (RealFrac a, Integral b) => a -> (b, a)
properFraction Double
a of
(b
i,Double
d) -> (b
i,Double -> Number
D Double
d)
{-# INLINE properFraction #-}
truncate :: forall b. Integral b => Number -> b
truncate (I Integer
a) = Integer -> b
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
a
truncate (D Double
a) = Double -> b
forall b. Integral b => Double -> b
forall a b. (RealFrac a, Integral b) => a -> b
truncate Double
a
{-# INLINE truncate #-}
round :: forall b. Integral b => Number -> b
round (I Integer
a) = Integer -> b
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
a
round (D Double
a) = Double -> b
forall b. Integral b => Double -> b
forall a b. (RealFrac a, Integral b) => a -> b
round Double
a
{-# INLINE round #-}
ceiling :: forall b. Integral b => Number -> b
ceiling (I Integer
a) = Integer -> b
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
a
ceiling (D Double
a) = Double -> b
forall b. Integral b => Double -> b
forall a b. (RealFrac a, Integral b) => a -> b
ceiling Double
a
{-# INLINE ceiling #-}
floor :: forall b. Integral b => Number -> b
floor (I Integer
a) = Integer -> b
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
a
floor (D Double
a) = Double -> b
forall b. Integral b => Double -> b
forall a b. (RealFrac a, Integral b) => a -> b
floor Double
a
{-# INLINE floor #-}