{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeOperators #-}
#if __GLASGOW_HASKELL__ >= 704
{-# LANGUAGE Safe #-}
#elif __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
#if MIN_VERSION_base(4,7,0)
{-# LANGUAGE EmptyCase #-}
#endif
module Data.Functor.Contravariant.Divise (
Divise(..)
, divised
, WrappedDivisible(..)
) where
import Control.Applicative
import Control.Applicative.Backwards
import Control.Arrow
import Control.Monad.Trans.Except
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Maybe
import qualified Control.Monad.Trans.RWS.Lazy as Lazy
import qualified Control.Monad.Trans.RWS.Strict as Strict
import Control.Monad.Trans.Reader
import qualified Control.Monad.Trans.State.Lazy as Lazy
import qualified Control.Monad.Trans.State.Strict as Strict
import qualified Control.Monad.Trans.Writer.Lazy as Lazy
import qualified Control.Monad.Trans.Writer.Strict as Strict
import Data.Functor.Apply
import Data.Functor.Compose
import Data.Functor.Constant
import Data.Functor.Contravariant
import Data.Functor.Contravariant.Divisible
import Data.Functor.Product
import Data.Functor.Reverse
#if !(MIN_VERSION_transformers(0,6,0))
import Control.Monad.Trans.Error
import Control.Monad.Trans.List
#endif
#if MIN_VERSION_base(4,8,0)
import Data.Monoid (Alt(..))
#else
import Data.Monoid (Monoid(..))
#endif
#if MIN_VERSION_base(4,9,0) && !MIN_VERSION_base(4,12,0)
import Data.Semigroup (Semigroup(..))
#endif
#if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged)
import Data.Proxy
#endif
#ifdef MIN_VERSION_StateVar
import Data.StateVar
#endif
#if __GLASGOW_HASKELL__ >= 702
#define GHC_GENERICS
import GHC.Generics
#endif
class Contravariant f => Divise f where
divise :: (a -> (b, c)) -> f b -> f c -> f a
divised :: Divise f => f a -> f b -> f (a, b)
divised :: forall (f :: * -> *) a b. Divise f => f a -> f b -> f (a, b)
divised = ((a, b) -> (a, b)) -> f a -> f b -> f (a, b)
forall a b c. (a -> (b, c)) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (a, b) -> (a, b)
forall a. a -> a
id
newtype WrappedDivisible f a = WrapDivisible { forall (f :: * -> *) a. WrappedDivisible f a -> f a
unwrapDivisible :: f a }
instance Contravariant f => Contravariant (WrappedDivisible f) where
contramap :: forall a' a.
(a' -> a) -> WrappedDivisible f a -> WrappedDivisible f a'
contramap a' -> a
f (WrapDivisible f a
a) = f a' -> WrappedDivisible f a'
forall (f :: * -> *) a. f a -> WrappedDivisible f a
WrapDivisible ((a' -> a) -> f a -> f a'
forall a' a. (a' -> a) -> f a -> f a'
forall (f :: * -> *) a' a.
Contravariant f =>
(a' -> a) -> f a -> f a'
contramap a' -> a
f f a
a)
instance Divisible f => Divise (WrappedDivisible f) where
divise :: forall a b c.
(a -> (b, c))
-> WrappedDivisible f b
-> WrappedDivisible f c
-> WrappedDivisible f a
divise a -> (b, c)
f (WrapDivisible f b
x) (WrapDivisible f c
y) = f a -> WrappedDivisible f a
forall (f :: * -> *) a. f a -> WrappedDivisible f a
WrapDivisible ((a -> (b, c)) -> f b -> f c -> f a
forall a b c. (a -> (b, c)) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f f b
x f c
y)
#if MIN_VERSION_base(4,9,0)
instance Semigroup r => Divise (Op r) where
divise :: forall a b c. (a -> (b, c)) -> Op r b -> Op r c -> Op r a
divise a -> (b, c)
f (Op b -> r
g) (Op c -> r
h) = (a -> r) -> Op r a
forall a b. (b -> a) -> Op a b
Op ((a -> r) -> Op r a) -> (a -> r) -> Op r a
forall a b. (a -> b) -> a -> b
$ \a
a -> case a -> (b, c)
f a
a of
(b
b, c
c) -> b -> r
g b
b r -> r -> r
forall a. Semigroup a => a -> a -> a
<> c -> r
h c
c
instance Semigroup m => Divise (Const m) where
divise :: forall a b c. (a -> (b, c)) -> Const m b -> Const m c -> Const m a
divise a -> (b, c)
_ (Const m
a) (Const m
b) = m -> Const m a
forall {k} a (b :: k). a -> Const a b
Const (m
a m -> m -> m
forall a. Semigroup a => a -> a -> a
<> m
b)
instance Semigroup m => Divise (Constant m) where
divise :: forall a b c.
(a -> (b, c)) -> Constant m b -> Constant m c -> Constant m a
divise a -> (b, c)
_ (Constant m
a) (Constant m
b) = m -> Constant m a
forall {k} a (b :: k). a -> Constant a b
Constant (m
a m -> m -> m
forall a. Semigroup a => a -> a -> a
<> m
b)
#else
instance Monoid r => Divise (Op r) where divise = divide
instance Monoid m => Divise (Const m) where divise = divide
instance Monoid m => Divise (Constant m) where divise = divide
#endif
instance Divise Comparison where divise :: forall a b c.
(a -> (b, c)) -> Comparison b -> Comparison c -> Comparison a
divise = (a -> (b, c)) -> Comparison b -> Comparison c -> Comparison a
forall a b c.
(a -> (b, c)) -> Comparison b -> Comparison c -> Comparison a
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide
instance Divise Equivalence where divise :: forall a b c.
(a -> (b, c)) -> Equivalence b -> Equivalence c -> Equivalence a
divise = (a -> (b, c)) -> Equivalence b -> Equivalence c -> Equivalence a
forall a b c.
(a -> (b, c)) -> Equivalence b -> Equivalence c -> Equivalence a
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide
instance Divise Predicate where divise :: forall a b c.
(a -> (b, c)) -> Predicate b -> Predicate c -> Predicate a
divise = (a -> (b, c)) -> Predicate b -> Predicate c -> Predicate a
forall a b c.
(a -> (b, c)) -> Predicate b -> Predicate c -> Predicate a
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide
#if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged)
instance Divise Proxy where divise :: forall a b c. (a -> (b, c)) -> Proxy b -> Proxy c -> Proxy a
divise = (a -> (b, c)) -> Proxy b -> Proxy c -> Proxy a
forall a b c. (a -> (b, c)) -> Proxy b -> Proxy c -> Proxy a
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide
#endif
#ifdef MIN_VERSION_StateVar
instance Divise SettableStateVar where divise = divide
#endif
#if MIN_VERSION_base(4,8,0)
instance Divise f => Divise (Alt f) where
divise :: forall a b c. (a -> (b, c)) -> Alt f b -> Alt f c -> Alt f a
divise a -> (b, c)
f (Alt f b
l) (Alt f c
r) = f a -> Alt f a
forall {k} (f :: k -> *) (a :: k). f a -> Alt f a
Alt (f a -> Alt f a) -> f a -> Alt f a
forall a b. (a -> b) -> a -> b
$ (a -> (b, c)) -> f b -> f c -> f a
forall a b c. (a -> (b, c)) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l f c
r
#endif
#ifdef GHC_GENERICS
instance Divise U1 where divise :: forall a b c. (a -> (b, c)) -> U1 b -> U1 c -> U1 a
divise = (a -> (b, c)) -> U1 b -> U1 c -> U1 a
forall a b c. (a -> (b, c)) -> U1 b -> U1 c -> U1 a
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide
#if MIN_VERSION_base(4,7,0)
instance Divise V1 where divise :: forall a b c. (a -> (b, c)) -> V1 b -> V1 c -> V1 a
divise a -> (b, c)
_ V1 b
x = case V1 b
x of {}
#else
instance Divise V1 where divise _ !_ = error "V1"
#endif
instance Divise f => Divise (Rec1 f) where
divise :: forall a b c. (a -> (b, c)) -> Rec1 f b -> Rec1 f c -> Rec1 f a
divise a -> (b, c)
f (Rec1 f b
l) (Rec1 f c
r) = f a -> Rec1 f a
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 (f a -> Rec1 f a) -> f a -> Rec1 f a
forall a b. (a -> b) -> a -> b
$ (a -> (b, c)) -> f b -> f c -> f a
forall a b c. (a -> (b, c)) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l f c
r
instance Divise f => Divise (M1 i c f) where
divise :: forall a b c.
(a -> (b, c)) -> M1 i c f b -> M1 i c f c -> M1 i c f a
divise a -> (b, c)
f (M1 f b
l) (M1 f c
r) = f a -> M1 i c f a
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 (f a -> M1 i c f a) -> f a -> M1 i c f a
forall a b. (a -> b) -> a -> b
$ (a -> (b, c)) -> f b -> f c -> f a
forall a b c. (a -> (b, c)) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l f c
r
instance (Divise f, Divise g) => Divise (f :*: g) where
divise :: forall a b c.
(a -> (b, c)) -> (:*:) f g b -> (:*:) f g c -> (:*:) f g a
divise a -> (b, c)
f (f b
l1 :*: g b
r1) (f c
l2 :*: g c
r2) = (a -> (b, c)) -> f b -> f c -> f a
forall a b c. (a -> (b, c)) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l1 f c
l2 f a -> g a -> (:*:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (a -> (b, c)) -> g b -> g c -> g a
forall a b c. (a -> (b, c)) -> g b -> g c -> g a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f g b
r1 g c
r2
instance (Apply f, Divise g) => Divise (f :.: g) where
divise :: forall a b c.
(a -> (b, c)) -> (:.:) f g b -> (:.:) f g c -> (:.:) f g a
divise a -> (b, c)
f (Comp1 f (g b)
l) (Comp1 f (g c)
r) = f (g a) -> (:.:) f g a
forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 ((g b -> g c -> g a) -> f (g b) -> f (g c) -> f (g a)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Apply f =>
(a -> b -> c) -> f a -> f b -> f c
liftF2 ((a -> (b, c)) -> g b -> g c -> g a
forall a b c. (a -> (b, c)) -> g b -> g c -> g a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f) f (g b)
l f (g c)
r)
#endif
instance Divise f => Divise (Backwards f) where
divise :: forall a b c.
(a -> (b, c)) -> Backwards f b -> Backwards f c -> Backwards f a
divise a -> (b, c)
f (Backwards f b
l) (Backwards f c
r) = f a -> Backwards f a
forall {k} (f :: k -> *) (a :: k). f a -> Backwards f a
Backwards (f a -> Backwards f a) -> f a -> Backwards f a
forall a b. (a -> b) -> a -> b
$ (a -> (b, c)) -> f b -> f c -> f a
forall a b c. (a -> (b, c)) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l f c
r
#if !(MIN_VERSION_transformers(0,6,0))
instance Divise m => Divise (ErrorT e m) where
divise :: forall a b c.
(a -> (b, c)) -> ErrorT e m b -> ErrorT e m c -> ErrorT e m a
divise a -> (b, c)
f (ErrorT m (Either e b)
l) (ErrorT m (Either e c)
r) = m (Either e a) -> ErrorT e m a
forall e (m :: * -> *) a. m (Either e a) -> ErrorT e m a
ErrorT (m (Either e a) -> ErrorT e m a) -> m (Either e a) -> ErrorT e m a
forall a b. (a -> b) -> a -> b
$ (Either e a -> (Either e b, Either e c))
-> m (Either e b) -> m (Either e c) -> m (Either e a)
forall a b c. (a -> (b, c)) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (Either e (b, c) -> (Either e b, Either e c)
forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip (Either e (b, c) -> (Either e b, Either e c))
-> (Either e a -> Either e (b, c))
-> Either e a
-> (Either e b, Either e c)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> (b, c)) -> Either e a -> Either e (b, c)
forall a b. (a -> b) -> Either e a -> Either e b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> (b, c)
f) m (Either e b)
l m (Either e c)
r
instance Divise m => Divise (ListT m) where
divise :: forall a b c. (a -> (b, c)) -> ListT m b -> ListT m c -> ListT m a
divise a -> (b, c)
f (ListT m [b]
l) (ListT m [c]
r) = m [a] -> ListT m a
forall (m :: * -> *) a. m [a] -> ListT m a
ListT (m [a] -> ListT m a) -> m [a] -> ListT m a
forall a b. (a -> b) -> a -> b
$ ([a] -> ([b], [c])) -> m [b] -> m [c] -> m [a]
forall a b c. (a -> (b, c)) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise ([(b, c)] -> ([b], [c])
forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip ([(b, c)] -> ([b], [c])) -> ([a] -> [(b, c)]) -> [a] -> ([b], [c])
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> (b, c)) -> [a] -> [(b, c)]
forall a b. (a -> b) -> [a] -> [b]
map a -> (b, c)
f) m [b]
l m [c]
r
#endif
instance Divise m => Divise (ExceptT e m) where
divise :: forall a b c.
(a -> (b, c)) -> ExceptT e m b -> ExceptT e m c -> ExceptT e m a
divise a -> (b, c)
f (ExceptT m (Either e b)
l) (ExceptT m (Either e c)
r) = m (Either e a) -> ExceptT e m a
forall e (m :: * -> *) a. m (Either e a) -> ExceptT e m a
ExceptT (m (Either e a) -> ExceptT e m a)
-> m (Either e a) -> ExceptT e m a
forall a b. (a -> b) -> a -> b
$ (Either e a -> (Either e b, Either e c))
-> m (Either e b) -> m (Either e c) -> m (Either e a)
forall a b c. (a -> (b, c)) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (Either e (b, c) -> (Either e b, Either e c)
forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip (Either e (b, c) -> (Either e b, Either e c))
-> (Either e a -> Either e (b, c))
-> Either e a
-> (Either e b, Either e c)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> (b, c)) -> Either e a -> Either e (b, c)
forall a b. (a -> b) -> Either e a -> Either e b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> (b, c)
f) m (Either e b)
l m (Either e c)
r
instance Divise f => Divise (IdentityT f) where
divise :: forall a b c.
(a -> (b, c)) -> IdentityT f b -> IdentityT f c -> IdentityT f a
divise a -> (b, c)
f (IdentityT f b
l) (IdentityT f c
r) = f a -> IdentityT f a
forall {k} (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT (f a -> IdentityT f a) -> f a -> IdentityT f a
forall a b. (a -> b) -> a -> b
$ (a -> (b, c)) -> f b -> f c -> f a
forall a b c. (a -> (b, c)) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l f c
r
instance Divise m => Divise (MaybeT m) where
divise :: forall a b c.
(a -> (b, c)) -> MaybeT m b -> MaybeT m c -> MaybeT m a
divise a -> (b, c)
f (MaybeT m (Maybe b)
l) (MaybeT m (Maybe c)
r) = m (Maybe a) -> MaybeT m a
forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT (m (Maybe a) -> MaybeT m a) -> m (Maybe a) -> MaybeT m a
forall a b. (a -> b) -> a -> b
$ (Maybe a -> (Maybe b, Maybe c))
-> m (Maybe b) -> m (Maybe c) -> m (Maybe a)
forall a b c. (a -> (b, c)) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (Maybe (b, c) -> (Maybe b, Maybe c)
forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip (Maybe (b, c) -> (Maybe b, Maybe c))
-> (Maybe a -> Maybe (b, c)) -> Maybe a -> (Maybe b, Maybe c)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> (b, c)) -> Maybe a -> Maybe (b, c)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> (b, c)
f) m (Maybe b)
l m (Maybe c)
r
instance Divise m => Divise (ReaderT r m) where
divise :: forall a b c.
(a -> (b, c)) -> ReaderT r m b -> ReaderT r m c -> ReaderT r m a
divise a -> (b, c)
abc (ReaderT r -> m b
rmb) (ReaderT r -> m c
rmc) = (r -> m a) -> ReaderT r m a
forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT ((r -> m a) -> ReaderT r m a) -> (r -> m a) -> ReaderT r m a
forall a b. (a -> b) -> a -> b
$ \r
r -> (a -> (b, c)) -> m b -> m c -> m a
forall a b c. (a -> (b, c)) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
abc (r -> m b
rmb r
r) (r -> m c
rmc r
r)
instance Divise m => Divise (Lazy.RWST r w s m) where
divise :: forall a b c.
(a -> (b, c)) -> RWST r w s m b -> RWST r w s m c -> RWST r w s m a
divise a -> (b, c)
abc (Lazy.RWST r -> s -> m (b, s, w)
rsmb) (Lazy.RWST r -> s -> m (c, s, w)
rsmc) = (r -> s -> m (a, s, w)) -> RWST r w s m a
forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Lazy.RWST ((r -> s -> m (a, s, w)) -> RWST r w s m a)
-> (r -> s -> m (a, s, w)) -> RWST r w s m a
forall a b. (a -> b) -> a -> b
$ \r
r s
s ->
((a, s, w) -> ((b, s, w), (c, s, w)))
-> m (b, s, w) -> m (c, s, w) -> m (a, s, w)
forall a b c. (a -> (b, c)) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (\ ~(a
a, s
s', w
w) -> case a -> (b, c)
abc a
a of
~(b
b, c
c) -> ((b
b, s
s', w
w), (c
c, s
s', w
w)))
(r -> s -> m (b, s, w)
rsmb r
r s
s) (r -> s -> m (c, s, w)
rsmc r
r s
s)
instance Divise m => Divise (Strict.RWST r w s m) where
divise :: forall a b c.
(a -> (b, c)) -> RWST r w s m b -> RWST r w s m c -> RWST r w s m a
divise a -> (b, c)
abc (Strict.RWST r -> s -> m (b, s, w)
rsmb) (Strict.RWST r -> s -> m (c, s, w)
rsmc) = (r -> s -> m (a, s, w)) -> RWST r w s m a
forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Strict.RWST ((r -> s -> m (a, s, w)) -> RWST r w s m a)
-> (r -> s -> m (a, s, w)) -> RWST r w s m a
forall a b. (a -> b) -> a -> b
$ \r
r s
s ->
((a, s, w) -> ((b, s, w), (c, s, w)))
-> m (b, s, w) -> m (c, s, w) -> m (a, s, w)
forall a b c. (a -> (b, c)) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise (\(a
a, s
s', w
w) -> case a -> (b, c)
abc a
a of
(b
b, c
c) -> ((b
b, s
s', w
w), (c
c, s
s', w
w)))
(r -> s -> m (b, s, w)
rsmb r
r s
s) (r -> s -> m (c, s, w)
rsmc r
r s
s)
instance Divise m => Divise (Lazy.StateT s m) where
divise :: forall a b c.
(a -> (b, c)) -> StateT s m b -> StateT s m c -> StateT s m a
divise a -> (b, c)
f (Lazy.StateT s -> m (b, s)
l) (Lazy.StateT s -> m (c, s)
r) = (s -> m (a, s)) -> StateT s m a
forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Lazy.StateT ((s -> m (a, s)) -> StateT s m a)
-> (s -> m (a, s)) -> StateT s m a
forall a b. (a -> b) -> a -> b
$ \s
s ->
((a, s) -> ((b, s), (c, s))) -> m (b, s) -> m (c, s) -> m (a, s)
forall a b c. (a -> (b, c)) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise ((a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout a -> (b, c)
f) (s -> m (b, s)
l s
s) (s -> m (c, s)
r s
s)
instance Divise m => Divise (Strict.StateT s m) where
divise :: forall a b c.
(a -> (b, c)) -> StateT s m b -> StateT s m c -> StateT s m a
divise a -> (b, c)
f (Strict.StateT s -> m (b, s)
l) (Strict.StateT s -> m (c, s)
r) = (s -> m (a, s)) -> StateT s m a
forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Strict.StateT ((s -> m (a, s)) -> StateT s m a)
-> (s -> m (a, s)) -> StateT s m a
forall a b. (a -> b) -> a -> b
$ \s
s ->
((a, s) -> ((b, s), (c, s))) -> m (b, s) -> m (c, s) -> m (a, s)
forall a b c. (a -> (b, c)) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise ((a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout a -> (b, c)
f) (s -> m (b, s)
l s
s) (s -> m (c, s)
r s
s)
instance Divise m => Divise (Lazy.WriterT w m) where
divise :: forall a b c.
(a -> (b, c)) -> WriterT w m b -> WriterT w m c -> WriterT w m a
divise a -> (b, c)
f (Lazy.WriterT m (b, w)
l) (Lazy.WriterT m (c, w)
r) = m (a, w) -> WriterT w m a
forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Lazy.WriterT (m (a, w) -> WriterT w m a) -> m (a, w) -> WriterT w m a
forall a b. (a -> b) -> a -> b
$
((a, w) -> ((b, w), (c, w))) -> m (b, w) -> m (c, w) -> m (a, w)
forall a b c. (a -> (b, c)) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise ((a -> (b, c)) -> (a, w) -> ((b, w), (c, w))
forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout a -> (b, c)
f) m (b, w)
l m (c, w)
r
instance Divise m => Divise (Strict.WriterT w m) where
divise :: forall a b c.
(a -> (b, c)) -> WriterT w m b -> WriterT w m c -> WriterT w m a
divise a -> (b, c)
f (Strict.WriterT m (b, w)
l) (Strict.WriterT m (c, w)
r) = m (a, w) -> WriterT w m a
forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Strict.WriterT (m (a, w) -> WriterT w m a) -> m (a, w) -> WriterT w m a
forall a b. (a -> b) -> a -> b
$
((a, w) -> ((b, w), (c, w))) -> m (b, w) -> m (c, w) -> m (a, w)
forall a b c. (a -> (b, c)) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise ((a -> (b, c)) -> (a, w) -> ((b, w), (c, w))
forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout a -> (b, c)
f) m (b, w)
l m (c, w)
r
instance (Apply f, Divise g) => Divise (Compose f g) where
divise :: forall a b c.
(a -> (b, c)) -> Compose f g b -> Compose f g c -> Compose f g a
divise a -> (b, c)
f (Compose f (g b)
l) (Compose f (g c)
r) = f (g a) -> Compose f g a
forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose ((g b -> g c -> g a) -> f (g b) -> f (g c) -> f (g a)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Apply f =>
(a -> b -> c) -> f a -> f b -> f c
liftF2 ((a -> (b, c)) -> g b -> g c -> g a
forall a b c. (a -> (b, c)) -> g b -> g c -> g a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f) f (g b)
l f (g c)
r)
instance (Divise f, Divise g) => Divise (Product f g) where
divise :: forall a b c.
(a -> (b, c)) -> Product f g b -> Product f g c -> Product f g a
divise a -> (b, c)
f (Pair f b
l1 g b
r1) (Pair f c
l2 g c
r2) = f a -> g a -> Product f g a
forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((a -> (b, c)) -> f b -> f c -> f a
forall a b c. (a -> (b, c)) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l1 f c
l2) ((a -> (b, c)) -> g b -> g c -> g a
forall a b c. (a -> (b, c)) -> g b -> g c -> g a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f g b
r1 g c
r2)
instance Divise f => Divise (Reverse f) where
divise :: forall a b c.
(a -> (b, c)) -> Reverse f b -> Reverse f c -> Reverse f a
divise a -> (b, c)
f (Reverse f b
l) (Reverse f c
r) = f a -> Reverse f a
forall {k} (f :: k -> *) (a :: k). f a -> Reverse f a
Reverse (f a -> Reverse f a) -> f a -> Reverse f a
forall a b. (a -> b) -> a -> b
$ (a -> (b, c)) -> f b -> f c -> f a
forall a b c. (a -> (b, c)) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise a -> (b, c)
f f b
l f c
r
lazyFanout :: (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout :: forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout a -> (b, c)
f ~(a
a, s
s) = case a -> (b, c)
f a
a of
~(b
b, c
c) -> ((b
b, s
s), (c
c, s
s))
strictFanout :: (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout :: forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout a -> (b, c)
f (a
a, s
s) = case a -> (b, c)
f a
a of
(b
b, c
c) -> ((b
b, s
s), (c
c, s
s))
funzip :: Functor f => f (a, b) -> (f a, f b)
funzip :: forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip = ((a, b) -> a) -> f (a, b) -> f a
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (a, b) -> a
forall a b. (a, b) -> a
fst (f (a, b) -> f a) -> (f (a, b) -> f b) -> f (a, b) -> (f a, f b)
forall b c c'. (b -> c) -> (b -> c') -> b -> (c, c')
forall (a :: * -> * -> *) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& ((a, b) -> b) -> f (a, b) -> f b
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (a, b) -> b
forall a b. (a, b) -> b
snd